Cambridge International Examinations

CHEMISTRY

MAXIMUM MARK: 40

Question	Sections	Indicative material	Mark
1 (a)	PDO Recording MMO Quality	Both balance readings and the correctly calculated mass of marble chips are recorded. Both balance readings are recorded to the same level of precision and all volumes are recorded to the same level of precision. $\delta \mathrm{V}$ decreases with time $(\delta V=(V$ at 2 min$)-(V$ at 1 min$)>$ (V at 3 min) - (V at 2 min) etc.) (Allow $\delta \mathrm{V}=0$ for $t=9 \rightarrow 10 \mathrm{~min}$)	$\begin{array}{ll}1 \\ 1 \\ 1 & \\ \\ & \\ & {[3]}\end{array}$
(b) (i)	PDO Layout	Scales chosen so that graph occupies more than half the available length for x - and y-axes and y-axis labelled volume or $\mathrm{V} / \mathrm{cm}^{3}$ or $\left(\mathrm{cm}^{3}\right)$ and x-axis labelled time or $t /$ minutes or min. All points plotted to within half a small square in the y direction and the centre of the dot/cross on the line in the x-direction.	1 1 1
(ii)		Appropriate line of best fit drawn.	1 [1]
(iii)	PDO Display ACE Interpretation	Appropriate tangent drawn on graph (line must be at least 10 cm long) and triangle drawn to obtain values for the gradient. Correctly calculates the gradient of the tangent drawn.	$\begin{array}{ll}1 \\ 1 & \\ \\ & \end{array}$
(iv)	ACE Conclusions	Curve (of decreasing gradient) indicates rate of reaction decreasing. Factor: acid concentration decreasing with time or surface area of marble chip decreasing with time Explanation: less frequent collisions because fewer (acid) particles/ H^{+}(ions) per unit volume or fewer surface particles/sites for reaction	1 1 1 [3]
(c)	ACE Interpretation	One of: $\mathrm{CO}_{2} /$ gas lost before bung replaced (smaller volume than expected); CO_{2} slightly soluble in water (smaller volume than expected); delay in starting stopwatch (greater volume than expected); inserting the bung displaces air (greater volume than expected)	1

Question	Sections	Indicative material	Mark
(c)	ACE (cont.)	Improvements	Improvement must match inaccuracy. One of: arrange marble chips in flask so mixing is carried out after bung replaced; use gas syringe/saturate water with CO_{2} before experiment; observe clock with second hand sweep/ask for assistance; check volume of air displaced before experiment and subtract
Qn 1			1

Question	Sections	Indicative material	Mark
2 (a) (i)	MMO Collection	Initial and final burette readings recorded for dilution, volume of FA 2 diluted recorded and the value is between 9 and $12 \mathrm{~cm}^{3}$.	$\begin{array}{ll}1 \\ \\ & \text { [1] }\end{array}$
(ii)	PDO Layout MMO Collection PDO Recording MMO Decisions	Volume given for rough titre and accurate titre details tabulated. (Minimum 2×2 boxes) Initial and final burette readings recorded for rough and accurate titres and titre volumes recorded. Headings and units correct for accurate titration. Initial/ final (burette) reading/volume or reading/volume at start/ finish and titre or volume/FA 4 added/used and $/ \mathrm{cm}^{3}$ or (cm^{3}). All accurate burette readings to $0.05 \mathrm{~cm}^{3}$ (for dilution and accurate titration). Has two uncorrected accurate titres within $0.1 \mathrm{~cm}^{3}$. Do not award if, having performed two titres within $0.1 \mathrm{~cm}^{3}$, a further titration has been performed that is more than $0.1 \mathrm{~cm}^{3}$ from the closer of the original 2 titres unless a further titration has been carried out which is within $0.1 \mathrm{~cm}^{3}$ of any of the others. Do not award if titres from burette readings to 0 dp are used (apart from use of 0 for initial reading).	1 1 1 1 1

Examiner rounds any accurate burette readings to the nearest $0.05 \mathrm{~cm}^{3}$, checks subtractions and then select the 'best' titres for Supervisor and candidate using the hierarchy
two identical titres; titres within $0.05 \mathrm{~cm}^{3}$; titres within $0.1 \mathrm{~cm}^{3}$; etc.
to calculate mean correct to $0.01 \mathrm{~cm}^{3}$.
Write ringed Supervisor value on candidate's script.
Calculate scaled candidate titre

$$
=\frac{\text { candidate mean titre } \times \text { candidate volume diluted }}{\text { Supervisor volume diluted }}
$$

Record calculated value, difference from Supervisor, δ, and any spread penalty on the candidate's script.

	MMO Quality	Award 3 marks for $\delta \leq 0.20 \mathrm{~cm}^{3}$. Award 2 marks for $0.20 \mathrm{~cm}^{3}<\delta \leq 0.40 \mathrm{~cm}^{3}$. Award 1 mark for $0.40 \mathrm{~cm}^{3}<\delta \leq 0.60 \mathrm{~cm}^{3}$. Apply spread penalty of -1 from the Quality marks as follows: titres selected (by Examiner) differ $\geq 0.50 \mathrm{~cm}^{3}$.	3
(b)	ACE Interpretation	Check mean titre correctly calculated to 2 dp from learly selected values (ticks or working) and correct subtractions. Candidate must average two (or more) accurate titres that are within $0.20 \mathrm{~cm}^{3}$ of each other.	1
(c)	(i)	ACE Interpretation	Correctly calculates $0.1 \times 25 / 1000$ and same answer for moles of HCl
(ii)		Correctly calculates (i) $\times 250 /$ volume in (b)	1

| Question | Sections | Indicative material | Mark | |
| ---: | :--- | :--- | :--- | :--- | :--- |
| (iii) | ACE
 Conclusions | Correctly calculates (ii) $\times 1000 /$ volume diluted in (a) | 1 | [1] |
| (iv) | PDO
 Display | All final answers recorded to 3 or 4 sf | 1 | [1] |
| Qn 2 | | | Total | 14 |

Question	Sections	Indicative material	Mark
FA 5 is $\mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{NaNO}_{2}(\mathrm{aq})$			
3 (a)	MMO Collection	Green solution forms blue ppt with NaOH insoluble in excess (Green solution forms) (pale) blue ppt with NH_{3} dissolving in excess to give dark blue solution (Pale) brown gas evolved or (colourless) gas evolved turning brown in air Purple solution decolourised Mixture turns dark blue/black with starch	1 1 1 [5]
(b)	MMO Decisions PDO Layout MMO Collection	Selects AgNO_{3} and BaCl_{2} or $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ (or in words) Tabulates test and observations (no repeated headings) No reaction with AgNO_{3} (not just dash) White ppt with $\mathrm{BaCl} l_{2}$ or $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	1 1 1 1 [4]
(c)	ACE Conclusions ACE Interpretation	Identifies three ions: cation, Cu^{2+} and anions, $\mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{NO}_{2}{ }^{-}$ (one cation and one anion correct = 1 mark) Cu^{2+} from blue ppt with both NaOH and NH_{3} or blue ppt with NH_{3} forming deep blue solution with excess NH_{3} $\mathrm{SO}_{4}{ }^{2-}$ from white ppt with $\mathrm{BaCl} l_{2}$ or $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ or $\mathrm{NO}_{2}{ }^{-}$from brown gas forming with acid (allow from slight effervescence with acid)	2 1 1 1
Qn 3		Total	13

